PROBLEMAS DE INGENIERÍA TÉRMICA

pfernandezdiez.es

Pedro Fernández Díez Carlos Renedo Estébanez Pedro R. FernándezGarcía

PROBLEMAS SOBRE COMBUSTIÓN

pfernandezdiez.es

En los cálculos estequiométricos hay que distinguir continuamente entre el balance de la masa, que se debe mantener, y las variaciones moleculares de sus ecuaciones.

Por ejemplo, en la ecuación de combustión:

$$2 \text{ CO} + 1 \text{ O}_2 = 2 \text{ CO}_2$$

el cambio molecular se expresa por

$$2 \text{ kg-mol CO} + 1 \text{ kg-mol O}_2 \implies 2 \text{ kg-mol CO}_2$$

es decir, se ha producido una reducción molecular de, 2 + 1 = 3 kg-mol, a 2 kg-mol al pasar del estado reactivo al estado producto.

Sin embargo, por el principio de conservación de la masa, debe existir un estricto balance entre los kilos de reactivos y productos.

Puesto que los números anteriores representan los valores respectivos de n_{CO} , n_{O_2} , y n_{CO_2} , la ecuación de la masa se puede poner en la forma:

$$n M(CO) + n M(O_2) = n M(CO_2)$$

es decir:

$$2 \text{ kg-mol (CO)} \times 28 \left(\frac{\text{kg}}{\text{kg-mol}}\right)_{\text{CO}} + 1 \text{ kg-mol (O}_2) \times 32 \left(\frac{\text{kg}}{\text{kg-mol}}\right)_{\text{O}_2} = 2 \text{ kg-mol (CO}_2) \times 44 \left(\frac{\text{kg}}{\text{kg-mol}}\right)_{\text{CO}_2}$$

$$56 \text{ kg CO} + 32 \text{ kg O}_2 = 88 \text{ kg CO}_2$$
 (en equilibrio, puesto que $56 + 32 = 88$) $_{93}$

Para el benceno se tiene:

$$2 (C_6H_6) + 15 (O_2) = 12 (CO_2) + 6 (H_2O)$$
en la que:
$$\begin{cases} n \text{ (reactivos)} = 2 + 15 = 17 \text{ kg-mol} \\ n \text{ (productos)} = 12 + 6 = 18 \text{ kg-mol} \end{cases}$$

es decir, existe un incremento molecular, mientras que se mantiene el balance de la masa puesto que en este caso se puede poner:

$$(2 \times 78) \text{ kg C}_{6}\text{H}_{6} + (15 \times 32) \text{ kg O}_{2} = (12 \times 44) \text{ kg CO}_{2} + (6 \times 18) \text{ kg H}_{2}\text{O} \xrightarrow{\text{es decir}} \begin{cases} 156 + 480 = 528 + 108 \\ 6636 = 636 \end{cases}$$

A veces se obtiene un balance simultáneo en masa y volumen; por ejemplo en la reacción:

$$CO + H_2O = CO_2 + H_2$$

el número de reactivos y de productos es igual a 2 kg-mol.

.....

1.- Una caldera utiliza un combustible gaseoso con el siguiente análisis volumétrico:

$$H_2 = 48\%$$
; $CH_4 = 22.5\%$; $CO = 19\%$; $N_2 = 6\%$; $CO_2 = 4.5\%$.

El aire que se suministra excede en un 25% al suministro de aire estequiométrico, y con esta proporción aire/combus-tible, la combustión es completa. Calcular para 100 kg-mol de combustible los porcentajes de los gases de la chimenea analizados en las siguientes situaciones:

- (a) sobre una base volumétrica para los gases "secos" de la chimenea
- (b) sobre una base de la masa para el total de gases "húmedos" de la chimenea.

RESOLUCIÓN

Ecuaciones químicas básicas de la combustión:
$$\begin{cases} 2 \text{ H}_2 + \text{O}_2 = 2 \text{ H}_2\text{O} \\ \text{CH}_4 + 2 \text{ O}_2 = \text{CO}_2 + 2 \text{ H}_2\text{O} \\ 2 \text{ CO} + \text{O}_2 = 2 \text{ CO}_2 \end{cases}$$

El combustible está formado por:
$$\left\{ \begin{array}{l} 48 \text{ kg-mol de H}_2 \;\; ; \;\; 22.5 \text{ kg-mol de CH}_4 \;\; ; \;\; 19 \text{ kg-mol de CO}_6 \\ 6 \text{ kg-mol de N}_2 \;\; ; \;\; 4.50 \text{ kg/mol de CO}_2 \end{array} \right.$$

Ecuaciones químicas básicas de la combustión:
$$\begin{cases} 2 \, H_2 + O_2 = 2 \, H_2 O \\ CH_4 + 2 \, O_2 = CO_2 + 2 \, H_2 O \\ 2 \, CO + O_2 = 2 \, CO_2 \end{cases}$$
 El combustible está formado por:
$$\begin{cases} 48 \, \text{kg-mol de } H_2 \; ; \; 22.5 \, \text{kg-mol de } CH_4 \; ; \; 19 \, \text{kg-mol de } CO \\ 6 \, \text{kg-mol de } N_2 \; ; \; 4.50 \, \text{kg/mol de } CO_2 \end{cases}$$
 Para la combustión estequiométrica:
$$\begin{cases} 48 \, \text{kg-mol de } H_2 \; \text{necesitan } 24 \, \text{kg-mol de } O_2 \\ 22.5 \, \text{kg-mol de } CH_4 \; \text{necesitan } 45 \, \text{kg-mol de } O_2 \\ 19 \, \text{kg-mol de } CO \; \text{necesitan } 9.5 \, \text{kg-mol de } O_2 \end{cases}$$

por lo que el requerimiento estequiométrico de oxígeno para el combustible es de: 24 + 45 + 9.5 = 78.5 kg-mol de O_2 por 100 kg-mol de combustible

Como el suministro de aire excede en un 25% a las necesidades estequiométricas fi que el oxígeno suministrado también es un 25% superior al calculado para la combustión estequiométrica, por lo que lo que:

Suministro de oxígeno:
$$1.25 \times 78.5 = 98.1 \text{ kg-mol}$$

Suministro de nitrógeno: $3.76 \times 98.1 = 369.1 \text{ kg-mol}$

$$Productos \ de \ la \ combustión: \begin{cases} 368.9 + 6 = 374.9 \ kg\text{-mol de N}_2 \ por \ 100 \ kg\text{-mol de combustible} \\ 48 + 45 = 93 \ kg\text{-mol de H}_2 O \ por \ 100 \ kg\text{-mol de combustible} \\ 4.5 + 22.5 + 19 = 46 \ kg\text{-mol de CO}_2 \ por \ 100 \ kg\text{-mol de combustible} \\ 398.1 - 78.5 = 19.6 \ kg\text{-mol de O}_2 \ por \ 100 \ kg\text{-mol de combustible} \end{cases}$$

Análisis seco (se excluye el agua)

	n	M (kg/kg-mol)	$x = n / \Sigma n$			
Nitrógeno	374,9	28	x(N2)= 374,9/440,5 = 0,851 = 85,1%			
Anhidrido carbónico	46	44	x(CO2) = 46/440,5 = 0,1044 = 10,44%			
Oxígeno	19,6	32	x(02) = 19,6/440,5 = 0,0445 = 4,45%			
Total	440,5					

Análisis húmedo

	n	M (kg/kg-mol)	n M (kg-mol)	% masa = (n M)/ Σ (n M)
Nitrógeno	374,9	28	10497	10497/14822 = 0,708 = 70,8%
Vapor de agua	93	18	1674	1674/14822 = 0,1129 = 11,29%
Anhidrido carbónico	46	44	2024	2024/14822 = 0,1365 = 13,65%
Oxígeno	19,6	32	627	627/14822 = 0,0423 = 4,23%
Total	533,5	_	14822	

2.- Un combustible derivado del petróleo cuyo análisis gravimétrico es: C = 86%; $H_2 = 12\%$; $O_2 = 1\%$; S = 1%se quema con aire que excede en un 70% del mínimo para la combustión completa teórica.

Determinar por 1 kg de combustible:

- a) La masa de aire que se suministra por kg de combustible
- b) El análisis volumétrico de los gases después de la combustión.

RESOLUCIÓN

$$\Rightarrow \begin{cases} 1 \text{ kg H}_2 + (32/4) \text{ kg O}_2 = 9 \text{ kg H}_2\text{O} \\ 1 \text{ kg C} + (32/12) \text{ kg O}_2 = (44/12) \text{ kg CO}_2 \\ 1 \text{ kg S} + 1 \text{ kg O}_2 = 2 \text{ kg SO}_2 \end{cases}$$

por lo que el oxígeno estequiométrico por kg de combustible es

$$(\frac{32}{12} \times 0.86) \text{ C} + \{(\frac{32}{4} \times 0.12) - 0.01\} \text{ O}_2 + (1 \times 0.01) \text{ S} = 3.253 \frac{\text{kg}_{\text{O}_2}}{\text{kg}_{\text{comb}}}$$

por lo que:

$$\frac{\text{Masa de aire}}{\text{Masa combustible}} = \left\{ \text{ Masa de aire} = 1 + 0.7 = 1.7 \right\} = 1.7 \times 3.253 \frac{\text{kg}_{\text{O}_2}}{\text{kg}_{\text{comb}}} \times \frac{\text{kg}_{\text{aire}}}{0.233 \text{ kg}_{\text{O}_2}} = 23.73 \frac{\text{kg}_{\text{aire}}}{\text{kg}_{\text{comb}}}$$

Gases de la combustión por 1 kg de combustible:

$$(\frac{44}{12} \times 0.86) \text{ CO}_2 + (\frac{36}{4} \times 0.12) \text{ H}_2\text{O} + (2 \times 0.01) \text{ SO}_2 + (3.253 \times 0.7) \text{ O}_2 + (0.767 \times 23.73) \text{ N}_2 \quad (\frac{\text{kg}}{\text{kg}_{\text{comb}}})$$

$$3,153 \frac{kg_{CO_2}}{kg_{comb}} + 1,08 \frac{kg_{H_2O}}{kg_{comb}} + 0,02 \frac{kg_{SO_2}}{kg_{comb}} + 2,277 \frac{kg_{O_2}}{kg_{comb}} + 18,2 \frac{kg_{N_2}}{kg_{comb}}$$

	G (kg)	M (kg/kg-mol)	G/M (kg-mol)	$x = (G/M)/\Sigma(G/M)$
Nitrógeno	18,2	28	0,65	0,65/0,8532 = 0,7618 = 76,18%
Vapor de agua	1,08	18	0,06	0,06/0,8532 = 0,0703 = 7,03%
Anhidrido carbónico	3,153	44	0,0717	0,60717/0,8532 = 0,084 = 8,4%
Oxígeno	2,277	32	0,0712	0,0712/0,8532 = 0,0834 = 8,34%
Anhidrido sulfuroso	0,02	64	0,0003	0,0003/0,8532 = 0,0004 = 0,04%
Total	24,73 kg		0,8532 kg-mol	

Los porcentajes en volumen son: $N_2 = 76.18$; $H_2O = 7.03$; $CO_2 = 8.4$; $O_2 = 8.34$; $SO_2 = 0.04$

3.- Calcular los análisis volumétricos secos de los gases desprendidos de la combustión del alcohol etílico C_2H_6O con concentraciones de mezcla de 90% y 120%. Se puede considerar que no existe oxígeno libre en el escape con la mezcla rica en combustible y que la combustión es completa con la mezcla débil en combustible.

RESOLUCIÓN

Reacción química:

$$C_2H_6O + 3O_2 = 2CO_2 + 3H_2O \implies 46 \text{ kg } C_2H_6O + 96 \text{ kg } O_2 = 88 \text{ kg } CO_2 + 54 \text{ kg } H_2O$$

$$Relación \ de \ masa \ estequiométrica \ \frac{aire}{combustible} = \frac{G_{aire}}{G_{comb}} = \frac{96}{46} \ \frac{kg_{O_2}}{kg_{comb}} \ \frac{kg_{aire}}{0.233 \ kg_{O_2}} = 8.96 \ \frac{kg_{aire}}{kg_{comb}}$$

La concentración de la mezcla se define en la forma: $CM = \frac{\text{aire estequiométrico suministrado}}{\text{aire real suministrado}}$

MEZCLA DEL 90% DE CONCENTRACIÓN

$$\frac{G_{\text{aire}}}{G_{\text{comb}}} = \frac{8.96}{0.9} = 9.96 \frac{\text{kg}_{\text{aire}}}{\text{kg}_{\text{comb}}}$$
 (mezcla pobre)

$$C_2H_6O + \frac{9.96 \times 0.233 \times 46}{32}O_2 + \frac{9.96 \times 0.233 \times 46}{32} \times \frac{79}{21}N_2 = 2CO_2 + 3H_2O + aO_2 + bN_2$$

$$C_2H_6O + 3336O_2 + 1255N_2 = 2CO_2 + 3H_2O + aO_2 + bN_2$$

Equilibrio atómico:
$$\begin{cases} Oxígeno \implies 0.5 + 3,336 = 2 + \frac{3}{2} + a \implies a = 0,336 \\ Nitrógeno \implies 12,55 = b \end{cases}$$

El volumen total de los productos secos es: n = 2 + 0.336 + 12.55 = 14,886 kg-mol, por lo que:

$$x_{CO_2} = \frac{n_{CO_2}}{n} = \frac{2 \times 100}{14,886} = 13,44\%$$
; $x_{O_2} = \frac{n_{O_2}}{n} = \frac{0,336 \times 100}{14,886} = 2,26\%$; $x_{N_2} = \frac{n_{N_2}}{n} = \frac{12,55 \times 100}{14,886} = 84.3\%$

MEZCLA DEL 120% DE CONCENTRACIÓN

$$\frac{G_{aire}}{G_{comb}} = \frac{8.96}{1.2} = 7.47 \frac{kg_{aire}}{kg_{comb}} \text{ (mezcla rica)}$$

$$C_2H_6O + \frac{7 \cdot 47 \times 0 \cdot 233 \times 46}{32}O_2 + \frac{7 \cdot 47 \times 0 \cdot 233 \times 46}{32} \times \frac{79}{21}N_2 = aCO_2 + bCO + cH_2O + dN_2$$

$$C_2H_6O + 2.5 O_2 + 9.41 N_2 = a CO_2 + b CO + c H_2O + d N_2$$

Equilibrio atómico:
$$\begin{cases} \text{Carbono} \implies 2 = a + b \\ \text{Hidrógeno} \implies 3 = c \\ \text{Oxígeno} \implies 0.5 + 2.5 = a + \frac{b+c}{2} \end{cases} \implies a = 1 \; ; \; b = 1 \; ; \; c = 3$$

El volumen total de los productos secos es: n = 1 + 1 + 9,41 = 11,41 kg-mol, por lo que:

$$x_{CO_2} = \frac{n_{CO_2}}{n} = \frac{1 \times 100}{11,41} = 8,76\% \quad ; \quad x_{CO} = \frac{n_{CO}}{n} = \frac{1 \times 100}{11,41} = 8,76\% \quad ; \quad x_{N_2} = \frac{n_{N_2}}{n} = \frac{9,41 \times 100}{11,41} = 82,47\%$$

4.- Un combustible tiene de masa 84% de carbono y 16% de hidrógeno. Después de quemar el combustible con aire, el análisis volumétrico seco de los productos es: $CO_2 = 10\%$; CO = 1%; $O_2 = 5,35\%$. Determinar el tanto por ciento de aire suministrado en exceso.

RESOLUCIÓN

Por cada kg de combustible se obtienen 0,84 kg de C y 0,16 kg de H₂.

Si se suministran X kg-mol de aire (que contiene 0,21 X kg-mol de O₂ y 0,79 X kg-mol de N₂) por kg de combustible, la ecuación de la combustión en kg-mol es:

$$0.84 \frac{kg_{C}}{kg_{comb}} \frac{kg \text{-mol}_{C}}{12 \, kg_{C}} + 0.16 \frac{kg_{H_{2}}}{kg_{comb}} \frac{kg \text{-mol}_{H_{2}}}{2 \, kg_{H_{2}}} + 0.21 \, X \frac{kg \text{-mol}_{O_{2}}}{kg_{comb}} + 0.79 \, X \frac{kg \text{-mol}_{N_{2}}}{kg_{comb}} = \\ = a \frac{kg \text{-mol}_{CO_{2}}}{kg_{comb}} + b \frac{kg \text{-mol}_{CO}}{kg_{comb}} + c \frac{kg \text{-mol}_{H_{2}O}}{kg_{comb}} + d \frac{kg \text{-mol}_{O_{2}}}{kg_{comb}} + e \frac{kg \text{-mol}_{N_{2}}}{kg_{comb}} = \\ \text{Carbono} \Rightarrow 0.84/12 = a + b = 0.07 \\ \text{Hidrógeno} \Rightarrow 0.16/2 = c = 0.08 \\ \text{Oxígeno} \Rightarrow 0.21 \, X = a + (b + c)/2 + d \\ \text{Nitrógeno} \Rightarrow 0.79 \, X = e$$

que junto con las ecuaciones de los balances volumétricos: $\frac{a}{b} = \frac{x_{CO_2}}{x_{CO}} = \frac{10\%}{1\%} = 10$; $\frac{a}{d} = \frac{x_{CO_2}}{x_{O_2}} = \frac{10}{5,35} = 1,87$

completan el sistema de 6 ecuaciones, y 6 incógnitas cuyas soluciones son:

Balance del carbono: 0,07 = a + b =
$$\{ a = 10 \text{ b} \} = 10 \text{ b} + b = 11 \text{ b} \implies \begin{cases} b = 0,006364 \\ a = 0,06364 \end{cases}$$

Balance del oxígeno: 0,21 X = a +
$$\frac{b+c}{2}$$
 + d = $\left\{ d = \frac{5,35 \text{ a}}{10} = \frac{5,35 \text{ a}}{10} = 0,03405 \right\} = 0,03405$ = 0,06364 + $\frac{0,006364 + 0,08}{2}$ + 0,03405 = 0,14087 \Rightarrow X = 0,67082 $\frac{\text{kg-mol}_{aire}}{\text{kg comb}}$

$$Como\ M\ _{aire} = 29\ \frac{kg\ _{aire}}{kg\ -mol\ _{aire}}\ \ \, , \quad resulta: \frac{G\ _{aire}}{G\ _{comb}} = 0,67082\ \frac{kg\ -mol\ _{aire}}{kg\ _{comb}}\ _{x}\ 29\ \frac{kg\ _{aire}}{kg\ -mol\ _{aire}} = 19,45\ \frac{kg\ _{aire}}{kg\ _{comb}} =$$

La relación estequiométrica es:

$$\frac{G_{aire}}{G_{comb}} \bigg\}_{estequiom \acute{e}trica} = \frac{\{0.84 \; \frac{kg_{\,C}}{kg_{\,comb}} \; {}^{x} \; \frac{32}{12} \; \frac{kg_{\,O_{\,2}}}{kg_{\,C}}\} \; + \{0.16 \; \frac{kg_{\,H_{\,2}}}{kg_{\,comb}} \; {}^{x} \; 8 \; \frac{kg_{\,O_{\,2}}}{kg_{\,H_{\,2}}}\}}{0.233 \; \frac{kg_{\,O_{\,2}}}{kg_{\,oire}}} = 15.11 \; \frac{kg_{\,aire}}{kg_{\,comb}}$$

existiendo un exceso de aire = $\frac{19,45 - 15,11}{15,11} = 0.2872 = 28,72\%$

5.- Una máquina utiliza un combustible gaseoso de composición volumétrica: CO = 26%; $H_2 = 9\%$; $CH_4 =$ 38%; $CO_2 = 6\%$; $O_2 = 1\%$; $N_2 = 20\%$, que se quema con aire en un motor, siendo la relación volumétrica aire/combustible = 7/1. Determinar la composición volumétrica de los gases de escape considerando no existe CO.

RESOLUCIÓN

Para 1 kg-mol de combustible, la ecuación química correspondiente es:

$$0.26 \text{ CO} + 0.09 \text{ H}_2 + 0.38 \text{ CH}_4 + 0.06 \text{ CO}_2 + 0.01 \text{ O}_2 + 0.20 \text{ N}_2 + (0.21 \text{ x} 7) \text{ O}_2 + (0.79 \text{ x} 7) \text{ N}_2 =$$

$$= a \text{ CO}_2 + b \text{ H}_2 \text{O} + c \text{ O}_2 + d \text{ N}_2$$

Equilibrio atómico:
$$\begin{cases} \text{Carbono} \implies 0.26 + 0.38 + 0.06 = a = 0.7 \\ \text{Hidrógeno} \implies 0.09 + 0.76 = b = 0.85 \\ \text{Oxígeno} \implies 0.13 + 0.06 + 0.01 + 1.47 = a + (b/2) + c = 0.7 + (0.85/2) + c \implies c = 0.565 \\ \text{Nitrógeno} \implies 0.2 + 5.53 = d = 5.73 \end{cases}$$

El volumen total es: n = 0.7 + 0.85 + 0.565 + 5.73 = 7.825 kg-mol, por lo que:

$$x_{CO_2} = \frac{n_{CO_2}}{n} = \frac{0.7}{7.825} \times 100 = 8.95\% \; ; \qquad x_{H_2O} = \frac{n_{H_2O}}{n} = \frac{0.85}{7.825} \times 100 = 10.86\%;$$

$$x_{O_2} = \frac{n_{O_2}}{n} = \frac{0.545}{7.825} \times 100 = 6.96\% \; ; \qquad x_{N_2} = \frac{n_{N_2}}{n} = \frac{5.73}{7.825} \times 100 = 73.23\%$$

- 6.- Determinar la relación de la masa estequiométrica aire/combustible para una gasolina de composición química parecida a la del hexano C_6H_{14} y el análisis volumétrico de los gases (húmedos) desprendidos en la combustión en las siguientes situaciones:
- a) Está presente todo el vapor de agua
- b) Los gases se enfrían a 1,01325 bar y 18°C.

RESOLUCIÓN

a) La ecuación química correspondiente es

$$C_6H_{14} + 9.5 O_2 + (9.5 \times \frac{79}{21}) N_2 = 6 CO_2 + 7 H_2O + (9.5 \times \frac{79}{21}) N_2$$

$$C_6H_{14} + 9.5 O_2 + 35.72 N_2 = 6 CO_2 + 7 H_2O + 35.72 N_2$$

$$\frac{G_{aire}}{G_{comb}} \bigg\}_{estequiométrica} = 9,5 \ \frac{kg\text{-mol}_{O_2}}{kg\text{-mol}_{comb}} \times \frac{kg\text{-mol}_{comb}}{86 \ kg_{comb}} \times \frac{32 \ kg_{O_2}}{kg\text{-mol}_{O_2}} \times \frac{kg_{aire}}{0.233 \ kg_{O_2}} = 1517 \ \frac{kg_{aire}}{kg_{comb}} = 1517 \ \frac{kg_{aire}}{kg_{comb}} \times \frac{1}{1000 \ kg_{comb}} \times \frac{1}{10000 \ kg_{comb}} \times \frac{1}{1000 \ kg_{comb}} \times \frac{1}{10000 \ kg_{comb}} \times \frac{1}{1000 \ kg_{comb}} \times \frac{1}{10000 \ kg_{comb}} \times \frac{1}{10000 \ kg_{comb}} \times \frac$$

$$n = 6 + 7 + 35,72 = 48,72 \frac{\text{kg-mol}}{\text{kg-mol}_{\text{comb}}}$$

$$x_{CO_2} = \frac{n_{CO_2}}{n} = \frac{6 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{H_2O} = \frac{n_{H_2O}}{n} = \frac{7 \times 100}{48,72} = 14\,4\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 73\,32\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72 \times 100}{48,72} = 12\,3\% \; \; ; \; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{n_{N_2}}{$$

b) La presión del vapor de agua a 18°C es de 0,0206 bar, por lo que:

$$x_{H_2O} = \frac{n_{H_2O}}{n} = \frac{p_{H_2O}}{p} = \frac{0.0206}{1.01325} \times 100 = 2.03\%$$

pfernandezdiez.es

$$n = n_{H_2O} + 6 CO_2 + 35,72 N_2 = \begin{vmatrix} n_{H_2O} = 0,0203 & n = 0,0203 & (n_{H_2O} + 41,72) \\ \Rightarrow n_{H_2O} = 0,85 & kg-mol \end{vmatrix} = 0,85 + 6 + 35,72 = 42,57 & kg-mol$$

$$x_{CO_2} = \frac{n_{CO_2}}{n} = \frac{6}{42,57} \times 100 = 14,1\% \; ; \; x_{N_2} = \frac{n_{N_2}}{n} = \frac{35,72}{42,57} \times 100 = 83,90\%$$

7.- Una muestra de gas combustible tiene el siguiente análisis volumétrico seco:

$$CO_2 = 9.3\%$$
; $O_2 = 30.3\%$; $N_2 = 60.4\%$

Cuando la mezcla de gas húmedo se enfría a 1,20 bar el vapor de agua del gas condensa a 50°C. Determinar:

- a) Las presiones parciales de los constituyentes a 1,20 bar y 50°C
- b) Si se considera que el combustible está formado totalmente por carbono e hidrógeno y que el vapor de agua de los gases de la combustión procede completamente de la combustión del hidrógeno del combustible, calcular los porcentajes en masa, del carbono e hidrógeno del combustible.

RESOLUCIÓN

$$p_{\rm H_{2O}} \bigg\}_{\rm 50^{\circ}C} = 0.1233 \ bar = \frac{n_{\rm H_{2O}}}{n_{\rm \, humedad}} \ p_{\rm total} \ = x_{\rm \, H_{2O}} p_{\rm \, total} \ \Rightarrow \ x_{\rm \, H_{2O}} = \frac{0.1233}{1.2} = 0.103 = 10.3\%$$

n
$$_{_{\rm H_{2O}}} =$$
 0,103 (n $_{_{\rm H_{2O}}}$ + n $_{_{\rm CO_{2}}}$ + n $_{_{\rm N_{2}}}$ + n $_{_{\rm N_{2}}}$) = 0,103 n $_{_{\rm H_{2O}}}$ + 0,103 n $_{\rm sequedad}$

0,897 n
$$_{\rm H_{2O}}$$
 = 0,103 n $_{\rm sequedad}$ \implies n $_{\rm H_{2O}}$ = 0,115 n $_{\rm sequedad}$

$$n_{humedad} = n_{H2O} + n_{sequedad} = 0,115 n_{sequedad} + n_{sequedad} = 1,115 n_{sequedad}$$

deduciéndose las siguientes presiones parciales:

$$p_{\text{CO}_2}$$
 $\frac{n_{\text{CO}_2}}{n_{\text{humedad}}} p_{\text{total}} = \frac{n_{\text{CO}_2}}{1,115} \frac{p_{\text{total}}}{n_{\text{sequedad}}} = \frac{0.093 \times 1,2}{1,115} = 0,1 \text{ bar}$

$$p_{O_2}$$
 $\Big\}_{50^{\circ}C} = \frac{n_{O_2}}{n_{\text{humedad}}} p_{\text{total}} = \frac{n_{O_2}}{1,115} \frac{p_{\text{total}}}{n_{\text{sequedad}}} = \frac{0,303 \times 1.2}{1,115} = 0,326 \text{ bar}$

$$p_{N_2}$$
 $\frac{n_{N_2}}{n_{humedad}}$ $p_{total} = \frac{n_{N_2}}{1,115} \frac{p_{total}}{n_{sequedad}} = \frac{0,604 \times 1,2}{1,115} = 0,65 \text{ bar}$

o también:
$$p_{N_2}$$
 $\Big|_{50^{\circ}\text{C}} = 1.2 - (0.1 + 0.1233 + 0.326) = 0.65 \text{ bar}$

Si llamamos Y al porcentaje de la masa de carbono del combustible y se suministran X kg-mol de aire por kg de combustible, resulta

$$\frac{Y}{12}$$
 C + $\frac{1 - Y}{2}$ H₂ + X H₂O + 3,76 X N₂ = a CO₂ + b H₂O + c O₂ + d N₂

Equilibrio atómico: $\begin{cases} \text{Carbono} \implies a = Y/12 \\ \text{Hidrógeno} \implies b = (1 - Y)/2 \\ \text{Oxígeno} \implies X = a + (b/2) + c \\ \text{Nitrógeno} \implies 3,76 \ X = d \end{cases}$

$$\frac{p_{\text{CO}_2}}{p_{\text{total}}} = \frac{n_{\text{CO}_2}}{n} = \frac{a}{a+b+c+d} = \frac{0.1}{1.2} = 0.0834$$

$$\frac{p_{H_2O}}{p_{total}} = \frac{n_{H_2O}}{n} = \frac{b}{a+b+c+d} = \frac{0,1233}{1,2} = 0,10275$$

por lo que:

$$\frac{a}{b} = \frac{Y/12}{(1 - Y)/2} = \frac{0.0834}{0.10275} = 0.8117 \implies Y = 0.8297$$

pfernandezdiez.es

8.- Una caldera quema 8 Tm/hora de petróleo con una dosificación de 1 kg de combustible por 20 kg de aire; los gases salen de la chimenea a una velocidad de 4,5 m/seg; el coeficiente global de pérdidas térmicas debido al paso de los gases a través de la chimenea es de 14 Kcal/hm 2 °C. La temperatura del medio exterior es de 20°C. El coeficiente de gasto es, $\varphi = 0,32$

El peso específico de los gases es, $\gamma_{gases} = 1,315 \text{ kg/m}^3$; El peso específico del aire es, $\gamma_{aire} = 1,288 \text{ kg/m}^3$ Determinar, en condiciones de gasto máximo:

- a) La altura H de la chimenea y la depresión existente en la misma si se supone circulación natural
- b) La sección transversal S de la chimenea
- c) El volumen de los gases evacuados

RESOLUCION

a) Altura de la chimenea y depresión existente en la misma, si se supone circulación natural

$$v_{sal} = 4.5 \frac{m}{seg} = \sqrt{\frac{1}{1 + h_{cF}}} \sqrt{2 g H \frac{T_{int} - T_{ext}}{T_{ext}}}$$
 (con h_{cF} en $\frac{Kcal}{hm^2 \circ C}$)

Como se supone gasto máximo \Rightarrow T_{int} = 2 T_{ext} = 2 x (20 + 273) = 586°K

4,5
$$\frac{\text{m}}{\text{seg}} = \sqrt{\frac{1}{1+14}} \sqrt{2 \text{ g H} \frac{586-293}{293}} = 0,2582 \sqrt{2 \text{ g H}} \implies \boxed{\text{H} = 15,5 \text{ m}}$$

Depresión existente en la chimenea si se supone circulación natural

Depresión natural:
$$\Delta p = H (\gamma_{gases} - \gamma_{aire}) = 15.5 \times (1.315 - 1.288) \frac{Kg}{m^2} = 0.4185 \frac{Kg}{m^2}$$

b)Sección transversal S de la chimenea

$$\frac{G_{comb} \left(1 + \epsilon \; G_{aire} - G_{cenizas}\right)}{3600} = 94 \; \phi \; S \; \frac{\sqrt{H \; (T_{int} - T_{ext})}}{T_{int}}$$

$$\frac{8000 \frac{\text{Kg}}{\text{hora}} (1 + 20 - 0)}{3600 \frac{\text{seg}}{\text{hora}}} = 94 \times 0,32 \times S \frac{\sqrt{15,5} (586 - 293)}{586} \implies S = 13,49 \text{ m}^2 \text{ ; d} = 4,144 \text{ m}$$

c) Volumen de los gases evacuados

$$V_{humos} = S \times v = 13,49 \text{ m}^2 \times 4,5 \frac{m}{\text{seg}} \times 60 \frac{\text{seg}}{\text{min}} = 3.645 \frac{\text{m}^3}{\text{minuto}}$$

9.- Una caldera debe producir 10.000 kg/hora de vapor saturado a la presión de 20 kg/cm^2 y temperatura de saturación $T_s = 211,4^{\circ}\text{C}$, tomando el agua de alimentación a 15°C , y quemando hulla de potencia calorífica 7800 Kcal/kg, de composición:

$$C = 0.78$$
; $H_2 = 0.055$; $O_2 = 0.07$; cenizas = 0.07; humedad = 0.03

El coeficiente de transmisión de calor para el agua es, $h_{Cagua} = 5000 \text{ Kcal/h.m}^2$. °C

El coeficiente de transmisión de calor para los humos es, h_{C humos} = 40 Kcal/h.m². °C

El coeficiente de conductividad del hierro es, k = 50 Kcal/m.h.°C

Espesor de la caldera, e = 10 mm

Coeficiente de exceso de aire, $\varepsilon = 1,4$

Calor específico medio de los humos, $c_{p(humos)} = 0.27 \text{ Kcal/kg}^{\circ}C$

Temperatura de la sala de calderas, 20°C

Pérdidas por radiación al exterior, $\delta = 0.1$

Determinar

- a) El peso de los gases producidos por cada kg de carbón
- b) La temperatura media de los gases de la cámara de combustión
- c) La temperatura de los humos al principio de la superficie de calefacción
- d) La cantidad de combustible quemado por hora
- e) El coeficiente complejo U de transmisión del calor

f) La temperatura de los gases al final de la superficie de calefacción.

g) La superficie de calefacción

RESOLUCION

a) Peso de los gases producidos por cada kg de carbón:

$$G_{gases} = 1 + 4,34 \ \epsilon \ (2,67 \ C + 8 \ H + S - O) - G_{cenizas} = 1 + \epsilon \ G_{aire} - G_{cenizas} \frac{Kg \ gases}{1 \ Kg \ combustible}$$

$$G_{aire} = 4,34 (2,67 C + 8 H + S - O) \frac{Kg aire}{1 Kg combustible} =$$

= 4,34 x {(2,67 x 0,78) + (8 x 0,05) + 0 - 0,07} = 10,47
$$\frac{\text{Kg aire}}{1 \text{ Kg combustible}}$$

$$G_{gases} = 1 + (1.4 \times 10.47) - 0.07 = 15.59 \text{ Kg}$$

b) Temperatura media de los gases de la cámara de combustión (Text es la temperatura del medio exterior = 20°C):

$$(1 - \delta) P_{ci} = (1 + \epsilon G_{aire} - G_{cen}) c_{p(humos)} (T_{caldera} - T_{ext})$$

δ es el tanto por uno de las pérdidas por radiación al exterior

$$T_{caldera} = \frac{(1 - \delta) P_{ci}}{(1 + \epsilon G_{aire} - G_{cenizas}) c_{p(humos)}} + T_{ext} = \frac{(1 - 0.1) \times 7800 \frac{Kcal}{1 \text{ Kg comb}}}{15,59 \frac{Kg \text{ gases}}{1 \text{ Kg comb}} \times 0.27 \frac{Kcal}{Kg \text{ gases}}} + 20^{\circ}\text{C} = 1687^{\circ}\text{C}$$

c) Temperatura de los humos al principio de la superficie de calefacción.- En esta situación no hay pérdidas por radiación:

$$T_{\text{humos}} = \frac{P_{\text{ci}}}{(1 + \epsilon G_{\text{aire}} - G_{\text{cenizas}}) c_{\text{p(humos)}}} + T_{\text{ext}} = \frac{7800 \frac{\text{Kcal}}{1 \text{ Kg comb}}}{15,59 \frac{\text{Kg gases}}{1 \text{ Kg comb}}} \times 0.27 \frac{\text{Kcal}}{\text{Kg gases}} + 20^{\circ}\text{C} = 1873^{\circ}\text{C}$$

d) La cantidad de combustible quemado por hora

$$10000 \frac{Kg \ vapor}{hora} \ (i_{vapor \ sat} - i_{agua \ alimentación}) = 7800 \frac{Kcal}{Kg \ comb} \ G_{comb} \ \eta = 7800 \frac{Kcal}{Kg \ comb} \ G_{comb} \ (1 - \delta)$$

$$10000 \frac{\text{Kg vapor}}{\text{hora}} (668,5-15) \frac{\text{Kcal}}{\text{Kg vapor}} = 7800 \frac{\text{Kcal}}{\text{Kg comb}} G_{\text{comb}} \times 0.9 \implies G_{\text{comb}} = 931 \frac{\text{Kg comb}}{\text{hora}}$$

e) Coeficiente U de transmisión del calor (pared plana)
$$U = \frac{1}{\frac{1}{h_{Chumos}} + \frac{e}{k} + \frac{1}{h_{Cyapor}}} = \frac{1}{\frac{1}{40} + \frac{0.01}{50} + \frac{1}{5000}} = 39,37 \frac{\text{Kcal}}{\text{hm}^2 \, {}^{\circ}\text{C}}$$

f) Temperatura de los gases al final de la superficie de calefacción (A es la superficie de calefacción).

$$T_{\text{final}} = T_{\text{sat}} + (T_{\text{inicial}} - T_{\text{sat}}) \exp(\frac{-U A}{G_{\text{aire}} c_{p(\text{humos})} G_{\text{comb}}}) =$$

= 211,4°C + (1873 - 211,4)°C exp(
$$\frac{-39,37 \text{ A}}{15.59 \times 0.27 \times 931}$$
) = 211,4 + 1161,6 exp (-0,01 A)

$$Q = 10000 \frac{\text{kg}_{\text{vapor}}}{\text{hora}} (i_{\text{vapor}} - i_{\text{agua alim.}}) \frac{\text{Kcal}}{\text{kg}_{\text{vapor}}} = 10000 (668, 5 - 15) = 6.535.10^{6} \frac{\text{Kcal}}{\text{hora}}$$

$$Q = U A \frac{\Delta T_2 - \Delta T_1}{\ln \frac{\Delta T_2}{\Delta T_1}} = \begin{vmatrix} \Delta T_2 = 1873 - 211, 4 = 1661, 6 \\ \Delta T_1 = T_{final} - 15 \end{vmatrix} = 39,37 \frac{Kcal}{m^2 h^{\circ} C} A \frac{1661,6 - T_{final} + 15}{\ln \frac{1661,6}{T_{final} - 15}} = 6,535.10^6 \frac{Kcal}{hora}$$

por lo que:
$$\begin{cases} T_{\text{final}} = 211.4 + 1161.6 \text{ exp } (-0.01 \text{ A}) \\ 39.37 \text{ A} (1676.6 - T_{\text{final}}) = 6.535.10^{6} (\ln \frac{1661.6}{T_{\text{final}} - 15}) \end{cases}$$

10.- En una instalación térmica se han de quemar 1,8 Tm/hora de un combustible líquido, de composición química, C_{12} H_{23} , en exceso de aire, $\varepsilon = 1,5$.

Determinar

- a) La potencia calorífica superior e inferior de este combustible
- b) El aire necesario para la combustión, teniendo en cuenta el exceso de aire.
- c) La sección transversal y la altura de la chimenea que ha de evacuar los gases de la combustión, siendo la relación, diámetro/altura = 1/20, en condiciones de tiro máximo, sabiendo que la temperatura y presión de la atmósfera son 15° C, y 760 mm de Hg respectivamente. El coeficiente de velocidad es, $\varphi = 0,25$.

RESOLUCION

a)Potencia calorífica superior e inferior de este combustible

Potencia calorífica superior del combustible:
$$\begin{cases} 0.862 \times 8000 = 6896 \\ 0.138 \times 32000 = 4416 \end{cases} \Rightarrow \mathsf{P}_{\mathsf{cs}} = 11312 \; \frac{\mathsf{Kcal}}{\mathsf{kg}_{\mathsf{comb}}}$$

Potencia calorífica inferior del combustible: P_{ci} = 11.312 - 850 = 10.462 Kcal/kg_{comb}

b) Aire necesario para la combustión, teniendo en cuenta el exceso de aire

$$C_{12} H_{23} + 17,75 O_2 \rightarrow 12 CO_2 + 11,5 H_2O$$

$$\{(12 \times 12) + 23\}$$
 C₁₂ H₂₃ + 17,75 (16 × 2) O₂ \rightarrow 12 (12 + 32) CO₂ + 11,5 (2 + 16) H₂O

$$\{167\} \; \mathrm{C}_{12} \; \mathrm{H}_{23} + \{568\} \; \mathrm{O}_2 \to \{528\} \; \mathrm{CO}_2 + \{207\} \; \mathrm{H}_2\mathrm{O}$$

Aire: 21%
$$O_2$$
; 79% N_2 ; Nitrógeno = $\frac{79 \times 568}{21}$ = 2136,7 (unidades en peso de N_2)

N° de kg de O₂ por 1 kg de combustible:
$$\begin{cases} 167 \text{ es a } 568 \\ \text{como 1 es a G}_{\text{O}_2} \end{cases} \Rightarrow G_{\text{O}_2} = 3,401 \frac{\text{kg}_{\text{O}_2}}{\text{kg}_{\text{comb}}}$$

por lo que:
$$\begin{cases} 1 \text{ kg}_{\text{aire}} \text{ es a } 0.21 \text{ k}_{\text{O}_2} \\ \text{como } G_{\text{aire}} \text{ es a } 3.401 \end{cases} \Rightarrow G_{\text{aire}} = 16.196 \frac{\text{kg}_{\text{aire}}}{\text{kg}_{\text{comb}}}$$

Como hay un exceso de aire (1,5) serán necesarios, $16,196 \times 1,5 = 24,3 \text{ kg}_{aire}$ por $1 \text{ kg}_{combustible}$.

c) La sección transversal y la altura de la chimenea que ha de evacuar los gases de la combustión, siendo la relación, diámetro/altura = 1/20, en condiciones de tiro máximo, sabiendo que la temperatura y presión de la atmósfera son 15°C, y 760 mm de Hg respectivamente.

El coeficiente de velocidad es, $\varphi = 0.25$.

$$\frac{G_{comb}\left(1+\epsilon\,G_{aire}\text{-}G_{cenizas}\right)}{3600}=94~\phi\,S\,\frac{\sqrt{H\left(T_{int}\text{-}T_{ext}\right)}}{T_{int}}$$

$$T_{int} = 2 T_{ext} = 2 x (273 + 15) = 576^{\circ} K$$
; $T_{ext} = 273 + 15 = 288^{\circ} K$

$$\frac{1800 \text{ (kg/hora)} (1 + 24.3 - 0)}{3600} = 94 \times 0.25 \text{ S} \frac{\sqrt{\text{H} (576 - 288)}}{576} \implies \text{S} \sqrt{\text{H}} = 18.27$$

$$\begin{cases} \frac{\pi D^2}{4} H = 18,27 \\ \frac{D}{H} = \frac{1}{20} \implies H = 20 D \end{cases} \implies \frac{\pi D^2}{4} \sqrt{20 D} = 18,27 \implies \begin{cases} D = 1,934 \text{ m} \\ H = 20 D = 38,7 \text{ m} \end{cases}$$

11.- Un hidrocarburo líquido tiene la siguiente composición química en masa, C=84,7%; H=15,5%, y se le hace arder, inyectándole en un hogar de una caldera, con un 50% de exceso de aire. Determinar

a) La composición química de los humos producidos

- b) La potencia calorífica superior e inferior de este combustible
- c) ¿Cómo variará el poder calorífico superior, si la humedad del combustible aumenta hasta el 12%?
- d) Si los humos producidos tienen una temperatura de 280°C cuando se les introduce en la chimenea, y se sabe que el coeficiente de gasto de la misma es, $\varphi = 0,2$, ¿cuál será la relación que deberá existir entre la sección transversal S de la chimenea, y su altura H, sabiendo que la temperatura del medio ambiente es de 20°C?

RESOLUCION

a) Composición química de los humos producidos

100 gramos de hidrocarburo se componen de: $\frac{84.7}{12}$ = 7,05 moles de C; $\frac{15.3}{2}$ = 7,65 moles de H₂

Ecuaciones de la combustión:
$$\begin{cases} C + O_2 \rightarrow CO_2 \\ H_2 + \frac{1}{2} O_2 \rightarrow H_2O \end{cases}$$

La combustión teórica de 100 gramos de hidrocarburo necesita: $\begin{cases} \text{Para el C: 7,05 moles de O}_2 \text{ producen 7,05 moles de CO}_2 \\ \text{Para el H}_2 \colon \frac{7,65}{2} \text{ moles de O}_2 \text{ producen 7,65 moles de H}_2\text{O} \end{cases}$

por lo que es necesario utilizar. 7,05 + 3,825 = 10,875 moles de O_2 , lo cual supone que en los humos habrá un conte-

nido de
$$N_2$$
 dado por: $10,875 \times \frac{79}{21} = 40,91$ moles de N_2
Como la combustión se realiza con un 50% de exceso de aire, resulta que:

Aire:
$$\begin{cases}
Oxígeno: 10,875 \times 0,5 = 5,437 \text{ moles que pasan a los humos} \\
Nitrógeno: 40,91 \times 0,5 = 20,455 \text{ moles que habrá que sumar a los } 40,91 \implies 61,36 \text{ moles}
\end{cases}$$

Los porcentajes de *humos húmedos* de la combustión real de 100 gramos de hidrocarburo son:

Composición en volumen de los humos:
$$\begin{cases} CO_2 = 7,05 \text{ moles} \Rightarrow CO_2 = 7,05/81,505 = 8,65\% \\ O_2 = 5,44 \text{ moles} \Rightarrow O_2 = 5,44/81,505 = 6,67\% \\ H_2O = 7,65 \text{ moles} \Rightarrow H_2O = 7,65/81,505 = 9,38\% \\ N_2 = 61,365 \text{ moles} \Rightarrow N_2 = 61,35/81,505 = 75,3\% \end{cases}$$

De otra forma:
$$\begin{cases} \frac{C_x}{H_y} = \frac{84.7}{15.3} \\ C_x + H_y = 100 \end{cases} \Rightarrow 12 x + y = 100 \Rightarrow \begin{cases} x = 7.058 \\ y = 15.3 \end{cases}$$

Fórmula aproximada, $(C_{7,05} H_{15,3})_n$ ó $C_{12} H_{26}$

$$\begin{cases} \text{CO}_2 = 1,87 \text{ C} = 1,583 \ \frac{\text{m}^3}{\text{kg}_{\text{comb}}} \ ; \ \text{Composición en volumen de los humos: CO}_2 = \frac{1,583}{18,276} \times 100 = 8,65\% \\ \text{O}_2 \ \begin{cases} \text{O}_{\text{mín}} = 1,87 \text{ C} + 5,6 \text{ H} = 2,44 \ \frac{\text{m}^3}{\text{kg}_{\text{comb}}} \\ \text{O}_{\text{en exceso}} = (\epsilon - 1) \text{ O}_{\text{mín}} = 0,5 \times 2,44 = 1,22 \ \frac{\text{m}^3}{\text{kg}_{\text{comb}}} \ ; \ \text{Comp. en vol. humos: O}_2 = \frac{1,22}{18,276} \times 100 = 6,67\% \\ \text{H}_2\text{O} = 11,2 \text{ H} = 1,713 \ \frac{\text{m}^3}{\text{kg}_{\text{comb}}} \ ; \ \text{Composición en volumen de los humos: H}_2\text{O} = \frac{1,713}{18,276} \times 100 = 9,38\% \\ \text{N}_2 = \frac{79}{21} \text{ O}_2 = 13,76 \ \frac{\text{m}^3}{\text{kg}_{\text{comb}}} \ ; \ \text{Composición en volumen de los humos: N}_2 = \frac{13,76}{18,276} \times 100 = 75,3\% \\ \end{cases}$$

Humos = 18,276
$$\frac{\text{m}^3}{\text{Kg comb}}$$

b) Potencia calorífica superior e inferior de este combustible

$$P_{c sup} = 8080 \text{ C} + 34450 \text{ H} + 2500 \text{ S}$$

Como la fórmula aproximada es, C_{12} H_{26} , tendremos, para 1 mol:

$$C = 12 \times 12 = 144 \text{ gramos/mol}$$
; $H_2 = 26 \text{ gramos/mol}$; Total, 170 gramos/mol

por lo que:
$$C_x = \frac{144}{170} = 0.847$$
; $H_{2x} = \frac{170 - 144}{170} = 0.153$

$$P_{c \text{ sup}} = (8.080 \times 0.847) + (34.450 \times 0.153) = 12.115 \frac{Kcal}{Kg}$$

$$P_{c inf} = P_{c sup} - \{(9 \times H_{2x}) + w\} \times 597 = 12.115 - (9 \times 0.153 + 0) \times 597 = 12.115 - 822 = 11.293 \frac{Kcal}{Kg} = 12.115 - 822 = 1$$

c) Variación del poder calorífico superior, si la humedad del combustible aumenta hasta el 12%

Composición química con 12% de humedad:
$$\begin{cases} C = 84,7\% \times 0.88 = 74,536\% \\ H_2 = 15,37\% \times 0.88 = 13,464\% \implies \text{un total del 100\%} \\ \text{Humedad: } 12\% \end{cases}$$

Potencia calorífica superior: 12.115 x
$$\frac{1-0.12}{1}$$
 = 10.661 $\frac{\text{Kcal}}{\text{Kg}}$

Potencia calorífica inferior:
$$11.293 \times 0.88 = 9.937 \frac{\text{Kcal}}{\text{Kg}}$$

d) Si los humos producidos tienen una temperatura de 280° C cuando se les introduce en la chimenea, y se sabe que el coeficiente de gasto de la misma es $\varphi = 0.2$, ¿cuál será la relación que deberá existir entre la sección transversal S de la chimenea, y su altura H, sabiendo que la temperatura del medio ambiente es de 20° C?

$$G_{aire} = 4.3 \{(2,67 \times 0,847) + (8 \times 0,153)\} \times 1.5 = 22,69 \frac{Kg \text{ de aire}}{Kg \text{ combustible}}$$

$$\frac{G_{comb} \left(1 + \epsilon \, G_{aire} - G_{cenizas}\right)}{3600} = 94 \, \phi \, S \, \frac{\sqrt{H \left(T_{int} - T_{ext}\right)}}{T_{int}}$$

$$\frac{G_{\text{comb}} (1 + 22,69 - 0)}{3600} = 94 \times 0.2 \text{ S} \frac{\sqrt{H (280 - 20)}}{280} \implies 0.012 G_{\text{comb}} = S \sqrt{H}$$

siendo G_{comb} el nº de kg/hora de combustible a quemar.

pfernandezdiez.es